Sommaire

1 Exercice

- 1.1 Sujet
- 1.2 Corrigé

2 Exercice

- 2.1 Sujet
- 2.2 Corrigé

3 Exercice

- 3.1 Sujet
- 3.2 Corrigé

1 Exercice

1.1 Sujet

Soit (u_n) la suite de nombres réels définies par $u_n = n^2 - 10n - 9$ pour tout entier naturel n.

- a) Calculer $u_{n+1} u_n$.
- b) En déduire que la suite (u_n) est strictement croissante à partir du rang 5.
- c) A l'aide de la calculatrice, conjecturer la limite de la suite (u_n) .
- d) Résoudre l'inéquation $u_n \ge 5000$.
- e) Ecrire une fonction python seuil(A) qui, pour tout nombre réel $A \ge 0$ détermine le plus petit rang n à partir duquel $u_n \ge A$.

1.2 Corrigé

Soit (u_n) la suite de nombres réels définies par $u_n = n^2 - 10n - 9$ pour tout entier naturel n.

a) Calculons $u_{n+1} - u_n$.

$$u_{n+1} - u_n = [(n+1)^2 - 10(n+1) - 9] - (n^2 - 10n - 9)$$

$$= n^2 + 2n + 1 - 10n - 10 - 9 - n^2 + 10n + 9$$

$$= n^2 - n^2 + 2n - 10n + 10n + 1 - 10 + 9 - 9$$

$$= 2n - 9$$

b) Déduisons-en que la suite (u_n) est strictement croissante à partir du rang 5. Etudions le signe de $u_{n+1} - u_n$.

$$u_{n+1} - u_n > 0 \Leftrightarrow 2n - 9 > 0$$

 $\Leftrightarrow 2n > 9$
 $\Leftrightarrow n > 4.5$
 $\Leftrightarrow n \ge 5$ (car $n \in \mathbb{N}$)

Ainsi, lorsque $n \ge 5$, on a $u_{n+1} > u_n$, de telle sorte que la suite (u_n) est strictement croissante à partir du rang 5.

c) A l'aide de la calculatrice, conjecturons la limite de la suite (u_n) .

n	un
130	15 591
131	15 842
132	16 095
133	16 350
134	16 607
135	16 866
136	17 127

n		u _n
	1000	989 991
	1001	991 982
	1002	993 975
	1003	995 970
	1004	997 967
	1005	999 966
	1006	1 001 967

Conjecture

$$\lim_{n \to +\infty} u_n = +\infty$$

d) Résolvons l'inéquation $u_n \ge 5000$.

$$u_n \ge 5000 \Leftrightarrow n^2 - 10n - 9 \ge 5000$$

$$\Leftrightarrow n^2 - 10n - 5009 > 0$$

Etudions le signe du polynôme du second degré $x^2 - 10x - 5009$. Le discriminant de $x^2 - 10x - 5009$ est

$$\Delta = (-10)^2 - 4 \times 1 \times (-5009) = 20136$$

Puisque $\Delta > 0$, $x^2 - 10x - 5009$ admet 2 racines

$$s = \frac{-(-10) - \sqrt{\Delta}}{2 \times 1} = 5 - \sqrt{5034} \sim -65.9$$

 $s' = \frac{-(-10) + \sqrt{\Delta}}{2 \times 1} = 5 + \sqrt{5034} \sim 75.9$

et on a le tableau de signes

x	$-\infty$		s		s'		$+\infty$
$x^2 - 10x - 5009$		+	0	_	0	+	

Par suite

$$u_n \ge 5000 \Leftrightarrow n^2 - 10n - 5009 \ge 0$$

 $\Leftrightarrow n \ge s'$
 $\Leftrightarrow n > 76$ (car $n \in \mathbb{N}$)

e) Ecrivons une fonction python seuil(A) qui, pour tout nombre réel $A \geq 0$ détermine le plus petit rang n à partir duquel $u_n \geq A$.

```
1 from math import *
2 def seuil(A):
3    n=0
4    u=-9  # u=u0
5    while u<A:
6     n=n+1
7     u=n**2-10*n-9  # u=un
8    return n</pre>
```

2 Exercice

2.1 Sujet

Soit (v_n) la suite de nombres réels définies par $v_0 = 3$ et $v_{n+1} = 4v_n^2 - 3v_n + 1$ pour tout entier naturel n.

- a) Déterminer les termes $v_1,\,v_2$ et v_3 en faisant apparaître le détail des calculs.
- b) Montrer que $v_{n+1} v_n = (2v_n 1)^2$.
- c) En déduire le sens de variation de la suite (v_n) .

2.2 Corrigé

Soit (v_n) la suite de nombres réels définies par $v_0 = 3$ et $v_{n+1} = 4v_n^2 - 3v_n + 1$ pour tout entier naturel n.

a) Déterminons les termes v_1 , v_2 et v_3 en faisant apparaître le détail des calculs.

b) Montrons que $v_{n+1} - v_n = (2v_n - 1)^2$.

$$v_{n+1} - v_n = (4v_n^2 - 3v_n + 1) - v_n$$

= $4v_n^2 - 4v_n + 1$
= $(2v_n)^2 - 2 \times (2v_n) \times 1 + 1^2$
= $(2v_n - 1)^2$

c) Déduisons en le sens de variation de la suite (v_n) .

Puisque

$$\forall t \in \mathbb{R} \quad t^2 > 0$$

on obtient

$$\forall n \in \mathbb{N} \quad (2v_n - 1)^2 \geq 0$$

$$\forall n \in \mathbb{N} \quad v_{n+1} - v_n \geq 0$$

$$\forall n \in \mathbb{N} \quad v_{n+1} \geq v_n$$

de telle sorte que la suite (v_n) est croissante.

3 Exercice

3.1 Sujet

Soit (w_n) la suite de nombres réels définies par $w_n = \frac{2n+3}{4n+5}$ pour tout entier naturel n.

- a) Calculer $w_{n+1} w_n$.
- b) En déduire que la suite (w_n) est strictement décroissante.
- c) A l'aide de la calculatrice, conjecturer la limite de la suite (w_n) .
- d) Résoudre l'inéquation $w_n < 0.501$.
- e) Ecrire une fonction python seuil(A) qui, pour tout nombre réel A>0.5 détermine le plus petit rang n à partir duquel $w_n < A$.

3.2 Corrigé

Soit (w_n) la suite de nombres réels définies par $w_n = \frac{2n+3}{4n+5}$ pour tout entier naturel n.

a) Calculons $w_{n+1} - w_n$.

$$w_{n+1} - w_n = \frac{2(n+1)+3}{4(n+1)+5} - \frac{2n+3}{4n+5}$$

$$= \frac{2n+5}{4n+9} - \frac{2n+3}{4n+5}$$

$$= \frac{(2n+5)(4n+5) - (2n+3)(4n+9)}{(4n+5)(4n+9)}$$

$$= \frac{[8n^2 + 10n + 20n + 25] - [8n^2 + 18n + 12n + 27]}{(4n+5)(4n+9)}$$

$$= \frac{[8n^2 + 30n + 25] - [8n^2 + 30n + 27]}{(4n+5)(4n+9)}$$

$$= \frac{25 - 27}{(4n+5)(4n+9)}$$

$$= \frac{-2}{(4n+5)(4n+9)}$$

b) Déduisons en que la suite (w_n) est strictement décroissante. Puisque $n \in \mathbb{N}$, on a $n \ge 0$ d'où $4n + 5 \ge 5 > 0$ et $4n + 9 \ge 9 > 0$. Par suite

$$\forall n \in \mathbb{N} \quad w_{n+1} - w_n < 0$$

$$\forall n \in \mathbb{N} \quad w_{n+1} < w_n$$

de telle sorte que la suite (w_n) est strictement décroissante.

c) A l'aide de la calculatrice, conjecturons la limite de la suite (w_n) .

n		un
	0	0.6
	1	0.555555556
	2	0.5384615385
	3	0.5294117647
	4	0.5238095238
	5	0.52
	6	0.5172413793

n		u _n
	100	0.5012345679
	101	0.5012224939
	102	0.5012106538
	103	0.5011990408
	104	0.5011876485
	105	0.5011764706
	106	0.5011655012

Conjecture.

$$\lim_{n \to +\infty} w_n = 0.5$$

d) Résolvons l'inéquation $w_n < 0.501$.

$$w_{n} < 0.501 \Leftrightarrow \frac{2n+3}{4n+5} < 0.501$$

$$\Leftrightarrow \frac{2n+3}{4n+5} \times (4n+5) < 0.501 \times (4n+5)$$

$$\Leftrightarrow 2n+3 < 2.004n + 2.505$$

$$\Leftrightarrow 2n-2.004n < 2.505 - 3$$

$$\Leftrightarrow -0.004n < -0.495$$

$$\Leftrightarrow n > \frac{-0.495}{-0.004}$$

$$\Leftrightarrow n > 123.75$$

$$\Leftrightarrow n > 124$$
(car $n \in \mathbb{N}$)

- (*) (On conserve l'ordre strict car 4n + 5 > 0)
- e) Ecrivons une fonction python seuil(A) qui, pour tout nombre réel A > 0.5 détermine le plus petit rang n à partir duquel $w_n < A$.

```
1 from math import *
2 def seuil(A):
3
    n=0
4
    w=0.6 # w=w0
5
    while w>=A:
 6
      n=n+1
      w=(2*n+3)/(4*n+5) # w=wn
 7
8
    return n
9
10 print (seuil (0.500001))
```